Hidrógeno | propiedades
English: Hydrogen

Propiedades

Combustión

el Motor principal del transbordador espacial quema hidrógeno líquido con oxígeno puro, produciendo una llama casi invisible

El gas hidrógeno (dihidrógeno[26]​ se quema de acuerdo con la siguiente ecuación balanceada.

2 H2(g) + O2(g) → 2 H2O(l) + 572  kJ (285.8 kJ/mol)[27]

Cuando se mezcla con oxígeno en una variedad de proporciones, de hidrógeno explota por ignición. El hidrógeno se quema violentamente en el aire; se produce la ignición automáticamente a una temperatura de 560 °C.[30]

H2 reacciona directamente con otros elementos oxidantes. Una reacción espontánea y violenta puede ocurrir a temperatura ambiente con cloro y flúor, formando los haluros de hidrógeno correspondientes: cloruro de hidrógeno y fluoruro de hidrógeno.[31]

A diferencia la de los hidrocarburos, la combustión del hidrógeno no genera óxidos de carbono (monóxido y dióxido) sino simplemente agua en forma de vapor, por lo que se considera un combustible amigable con el medio ambiente y ayuda a mitigar el calentamiento global.

Niveles energéticos electrónicos

Representación de los niveles energéticos del átomo de hidrógeno
Los primeros orbitales del átomo de hidrógeno (números cuánticos principales y azimutales).

El nivel energético del estado fundamental electrónico de un átomo de hidrógeno es –13,6 eV, que equivale a un fotón ultravioleta de, aproximadamente, 92 nm de longitud de onda.

Los niveles energéticos del hidrógeno pueden calcularse con bastante precisión empleando el modelo atómico de Bohr, que considera que el electrón orbita alrededor del protón de forma análoga a la órbita terrestre alrededor del Sol. Sin embargo, la fuerza electromagnética hace que el protón y el electrón se atraigan, de igual modo que los planetas y otros cuerpos celestes se atraen por la fuerza gravitatoria. Debido al carácter discreto (cuantizado) del momento angular postulado en los inicios de la mecánica cuántica por Bohr, el electrón en el modelo de Bohr solo puede orbitar a ciertas distancias permitidas alrededor del protón y, por extensión, con ciertos valores de energía permitidos. Una descripción más precisa del átomo de hidrógeno viene dada mediante un tratamiento puramente mecano-cuántico que emplea la ecuación de onda de Schrödinger o la formulación equivalente de las integrales de camino de Feynman para calcular la densidad de probabilidad del electrón cerca del protón.[32]​ El tratamiento del electrón a través de la hipótesis de De Broglie (dualidad onda--partícula) reproduce resultados químicos (tales como la configuración del átomo de hidrógeno) de manera más natural que el modelo de partículas de Bohr, aunque la energía y los resultados espectrales son los mismos. Si en la construcción del modelo se emplea la masa reducida del núcleo y del electrón (como se haría en el problema de dos cuerpos en Mecánica Clásica), se obtiene una mejor formulación para los espectros del hidrógeno, y los desplazamientos espectrales correctos para el deuterio y el tritio. Pequeños ajustes en los niveles energéticos del átomo de hidrógeno, que corresponden a efectos espectrales reales, pueden determinarse usando la teoría mecano-cuántica completa, que corrige los efectos de la relatividad especial (ver ecuación de Dirac), y computando los efectos cuánticos originados por la producción de partículas virtuales en el vacío y como resultado de los campos eléctricos (ver Electrodinámica Cuántica).

En el hidrógeno gaseoso, el nivel energético del estado electrónico fundamental está dividido a su vez en otros niveles de estructura hiperfina, originados por el efecto de las interacciones magnéticas producidas entre los espines del electrón y del protón. La energía del átomo cuando los espines del protón y del electrón están alineados es mayor que cuando los espines no lo están. La transición entre esos dos estados puede tener lugar mediante la emisión de un fotón a través de una transición de dipolo magnético. Los radiotelescopios pueden detectar la radiación producida en este proceso, lo que sirve para crear mapas de distribución del hidrógeno en la galaxia.

Formas elementales moleculares

Las primeras trazas observadas en una cámara de burbujas de hidrógeno líquido en el Bevatron

Existen dos tipos distintos de moléculas diatómicas de hidrógeno que difieren en la relación entre los espines de sus núcleos:[35]​ La distinción entre formas orto/para también se presenta en otras moléculas o grupos funcionales que contienen hidrógeno, tales como el agua o el metileno.

La interconversión no catalizada entre el parahidrógeno y el ortohidrógeno se incrementa al aumentar la temperatura; por esta razón, el H2 condensado rápidamente contiene grandes cantidades de la forma orto que pasa a la forma para lentamente.[37]

Una forma molecular llamada hidrógeno molecular protonado, H3+, se encuentra en el medio interestelar, donde se genera por la ionización del hidrógeno molecular provocada por los rayos cósmicos. También se ha observado en las capas superiores de la atmósfera de Júpiter. Esta molécula es relativamente estable en el medio del espacio exterior debido a las bajas temperaturas y a la bajísima densidad. El H3+ es uno de los iones más abundantes del universo, y juega un papel notable en la química del medio interestelar.[38]

Hidrógeno metálico

Si bien se suele catalogar al hidrógeno como no metal, a altas temperaturas y presiones puede comportarse como metal. En marzo de 1996, un grupo de científicos del Laboratorio Nacional Lawrence Livermore informó de que habían producido casualmente, durante un microsegundo y a temperaturas de miles de kelvins y presiones de más de un millón de atmósferas (> 100 GPa), el primer hidrógeno metálico identificable.[39]

Compuestos

Compuestos covalentes y orgánicos

A pesar de que el H2 no es muy reactivo en condiciones normales, forma multitud de compuestos con la mayoría de los elementos químicos. Se conocen millones de hidrocarburos, pero no se generan por la reacción directa del hidrógeno elemental con el carbono (aunque la producción del gas de síntesis seguida del proceso Fischer-Tropsch para sintetizar hidrocarburos parece ser una excepción pues comienza con carbón e hidrógeno elemental generado in situ). El hidrógeno puede formar compuestos con elementos más electronegativos, tales como los halógenos (flúor, cloro, bromo, yodo) o los calcógenos (oxígeno, azufre, selenio); en estos compuestos, el hidrógeno adquiere carga parcial positiva debido a la polaridad del enlace covalente. Cuando se encuentra unido al flúor, al oxígeno o al nitrógeno, el hidrógeno puede participar en una modalidad de enlace no covalente llamado "enlace de hidrógeno" o "puente de hidrógeno", que es fundamental para la estabilidad de muchas moléculas biológicas. El hidrógeno puede también formar compuestos con elementos menos electronegativos, tales como metales o semimetales, en los cuales adquiere carga parcial negativa. Estos compuestos se conocen como hidruros.

El hidrógeno forma una enorme variedad de compuestos con el carbono. Debido a su presencia en los seres vivos, estos compuestos se denominan compuestos orgánicos; el estudio de sus propiedades es la finalidad de la Química Orgánica, y el estudio en el contexto de los organismos vivos se conoce como Bioquímica. Atendiendo a algunas definiciones, los compuestos "orgánicos" requieren la presencia de carbono para ser denominados así (ahí tenemos el clásico ejemplo de la urea) pero no todos los compuestos de carbono se consideran orgánicos (es el caso del monóxido de carbono, o los carbonatos metálicos. La mayoría de los compuestos orgánicos también contienen hidrógeno y, puesto que es el enlace carbono-hidrógeno el que proporciona a estos compuestos muchas de sus principales características, se hace necesario mencionar el enlace carbono-hidrógeno en algunas definiciones de la palabra "orgánica" en Química. (Estas recientes definiciones no son perfectas, sin embargo, ya que un compuesto indudablemente orgánico como la urea no podría ser catalogado como tal atendiendo a ellas).

En la Química Inorgánica, los hidruros pueden servir también como ligandos puente que unen dos centros metálicos en un complejo de coordinación. Esta función es particularmente común en los elementos del grupo 13, especialmente en los boranos (hidruros de boro) y en los complejos de aluminio, así como en los clústers de carborano.[23]

Algunos ejemplos de compuestos covalentes importantes que contienen hidrógeno son: amoniaco (NH3), hidracina (N2H4), agua (H2O), peróxido de hidrógeno (H2O2), sulfuro de hidrógeno (H2S), etc.

Hidruros

A menudo los compuestos del hidrógeno se denominan hidruros, un término usado con bastante inexactitud. Para los químicos, el término "hidruro" generalmente implica que el átomo de hidrógeno ha adquirido carga parcial negativa o carácter aniónico (denotado como H-). La existencia del anión hidruro, propuesta por G. N. Lewis en 1916 para los hidruros iónicos del grupo 1 (I) y 2 (II), fue demostrada por Moers en 1920 con la electrolisis del hidruro de litio (LiH) fundido, que producía una cantidad estequiométrica de hidrógeno en el ánodo.[40]​ Para los hidruros de metales de otros grupos, el término es bastante erróneo, considerando la baja electronegatividad del hidrógeno. Una excepción en los hidruros del grupo II es el BeH2, que es polimérico. En el tetrahidruroaluminato (III) de litio, el anión AlH4- posee sus centros hidrúricos firmemente unidos al aluminio (III).

Representación del ion hidronio (H3O+), en la que se puede apreciar la condensación de carga negativa en el átomo de oxígeno, y el carácter positivo de los átomos de hidrógeno.

Aunque los hidruros pueden formarse con casi todos los elementos del grupo principal, el número y combinación de posibles compuestos varía mucho; por ejemplo, existen más de 100 hidruros binarios de boro conocidos, pero solamente uno de aluminio.[42]

«Protones» y ácidos

La oxidación del H2 formalmente origina el protón, H+. Esta especie es fundamental para explicar las propiedades de los ácidos, aunque el término «protón» se usa imprecisamente para referirse al hidrógeno catiónico o ion hidrógeno, denotado H+. Un protón aislado H+ no puede existir en disolución debido a su fuerte tendencia a unirse a átomos o moléculas con electrones mediante un enlace coordinado o enlace dativo. Para evitar la cómoda, aunque incierta, idea del protón aislado solvatado en disolución, en las disoluciones ácidas acuosas se considera la presencia del ion hidronio (H3O+) organizado en clústers para formar la especie H9O4+.[44]

Aunque exótico en la Tierra, uno de los iones más comunes en el universo es el H3+, conocido como hidrógeno molecular protonado o catión hidrógeno triatómico.[45]

Isótopos

Tubo de descarga lleno de hidrógeno puro
Tubo de descarga lleno de deuterio puro
El protio, el isótopo más común del hidrógeno, tiene un protón y un electrón. Es el único isótopo estable que no posee neutrones.

El isótopo más común de hidrógeno no posee neutrones, existiendo otros dos, el deuterio (D) con uno y el tritio (T), radiactivo con dos. El deuterio tiene una abundancia natural comprendida entre 0,0184 y 0,0082 % (IUPAC). El hidrógeno es el único elemento químico que tiene nombres y símbolos químicos distintos para sus diferentes isótopos.

El hidrógeno también posee otros isótopos altamente inestables (del 4H al 7H), que fueron sintetizados en el laboratorio, pero nunca observados en la naturaleza.[47]

  • 1H, conocido como protio, es el isótopo más común del hidrógeno con una abundancia de más del 99,98 %. Debido a que el núcleo de este isótopo está formado por un solo protón se le ha bautizado como protio, nombre que a pesar de ser muy descriptivo, es poco usado.
  • ²H, el otro isótopo estable del hidrógeno, es conocido como deuterio y su núcleo contiene un protón y un neutrón. El deuterio representa el 0,0026 % o el 0,0184 % (según sea en fracción molar o fracción atómica) del hidrógeno presente en la Tierra, encontrándose las menores concentraciones en el hidrógeno gaseoso, y las mayores (0,015 % o 150 ppm) en aguas oceánicas. El deuterio no es radiactivo, y no representa un riesgo significativo de toxicidad. El agua enriquecida en moléculas que incluyen deuterio en lugar de hidrógeno 1H (protio), se denomina agua pesada. El deuterio y sus compuestos se emplean en marcado no radiactivo en experimentos y también en disolventes usados en espectroscopia 1H - RMN. El agua pesada se utiliza como moderador de neutrones y refrigerante en reactores nucleares. El deuterio es también un potencial combustible para la fusión nuclear con fines comerciales.
  • ³H se conoce como tritio y contiene un protón y dos neutrones en su núcleo. Es radiactivo, desintegrándose en ³2He+ a través de una emisión beta. Posee un periodo de semidesintegración de 12,33 años.[23]​ Pequeñas cantidades de tritio se encuentran en la naturaleza por efecto de la interacción de los rayos cósmicos con los gases atmosféricos. También ha sido liberado tritio por la realización de pruebas de armamento nuclear. El tritio se usa en reacciones de fusión nuclear, como trazador en Geoquímica Isotópica, y en dispositivos luminosos autoalimentados. Antes era común emplear el tritio como radiomarcador en experimentos químicos y biológicos, pero actualmente se usa menos.

El hidrógeno es el único elemento que posee diferentes nombres comunes para cada uno de sus isótopos (naturales). Durante los inicios de los estudios sobre la radiactividad, a algunos isótopos radiactivos pesados les fueron asignados nombres, pero ninguno de ellos se sigue usando. Los símbolos D y T (en lugar de ²H y ³H) se usan a veces para referirse al deuterio y al tritio, pero el símbolo P corresponde al fósforo y, por tanto, no puede usarse para representar al protio. La IUPAC declara que aunque el uso de estos símbolos sea común, no es lo aconsejado.