Equilibrio térmico de la Tierra

La Tierra, para mantenerse térmicamente estable a lo largo del tiempo, debe ser capaz de evacuar, en término medio, toda la energía recibida en forma de radiación. En caso contrario, su temperatura aumentaría hasta los 800 000 °C durante los próximos mil millones de años[1]​.

De la energía solar que llega a la Tierra, en forma de radiación de onda corta, casi un 30%[5]​.

La energía solar no calienta la superficie de manera uniforme, sino que lo hace en mayor medida hacia el ecuador que hacia los polos. Este gradiente térmico en latitud trata de compensarse mediante el acoplamiento entre la atmósfera y las circulaciones oceánicas, conocido como motor térmico terrestre y que se mantiene en funcionamiento mediante procesos como la evaporación, convección, precipitaciones, vientos y corrientes oceánicas[6]

Radiación térmica

Irradiancia solar en lo alto de la atmósfera (en amarillo) y a nivel del mar (en rojo) tras la absorción producida por los gases de efectos invernadero. La curva continua representa la irradiancia de un cuerpo negro a una temperatura efectiva de 5778 K. La IAU recomienda actualmente utilizar 5772 K como se hace en el texto principal.

Todo emisor ideal (cuerpo negro) a una temperatura T emite radiación siguiendo la Ley de Planck y teniendo una emisión máxima a una longitud de onda regulada por la Ley de Wien.

El Sol emite muy aproximadamente como un cuerpo negro a 5772 K[9]​. Su radiación se puede considerar de onda corta.

La superficie terrestre emite también radiación térmica, pero con una temperatura mucho menor de aproximadamente 288 K. El grueso de esta radiación se emite entre 4 y 100 μm, con el máximo centrado en unas 10 μm[11]

Toda la superficie de la Tierra emite radiación pero la radiación solar sólo se recibe en la proyección de la cara diurna. Por eso, la radiación solar incidente en la parte superior de la atmósfera puede considerarse en promedio como[13]​:

La irradiancia solar total (TSI) incide sobre la proyección del círculo con el radio de la Tierra. Para determinar la irradiancia promedio sobre la superficie, tendremos que dividir por la superficie de la esfera terrestre.


donte TSI es la irradiancia solar total conocida también como constante solar, cuyo valor aceptado actualmente es de 1361 W/m², ligeramente menor que el que todavía podemos encontrar en muchas referencias.[14]

Albedo

El albedo es la reflexión de la radiación solar al incidir sobre el planeta. Las superficies claras presentan mayor albedo que las oscuras. Así, las nubes, el hielo y la nieve son las superficies con mayor albedo mientras que los bosques, los océanos y la roca pelada tienen un albedo inferior[18]​.

Temperatura de equilibrio de la atmósfera terrestre

En una primera aproximación se puede decir que la emisión térmica de la atmósfera en el infrarrojo compensa la irradiación solar de onda corta sobre la superficie. Esta última será la diferencia entre la radiación solar incidente en lo alto de la atmósfera (340 W/m²) y el albedo

En dichas condiciones se podría calcular fácilmente la temperatura media de la superficie terrestre mediante la Ley de Stefan-Boltzmann. Suponiendo que la atmósfera emite como un cuerpo negro, podemos escribir[19]

Media anual en el periodo 2003-10 de la emisión térmica de la atmósfera terrestre como vista desde el espacio.

Esta temperatura de equilibrio se entiende más apropiadamente como temperatura efectiva de emisión, es decir, aquella que mediría una observador lejos de la Tierra a partir de la potencia total de la la radiación infrarroja emitida al espacio por la atmósfera de nuestro planeta.[20]

Habitualmente, se entiende la temperatura de equilibrio como la que tendría la superficie terrestre sin la existencia del efecto invernadero. Los gases como el vapor de agua y el dióxido de carbono provocan el calentamiento de la parte baja de la atmósfera que conocemos como efecto invernadero llevando la temperatura media superficial a unos 14 °C [23]​.

Debido a que la temperatura disminuye con al altitud unos 6,5 °C/km[26]​, la temperatura efectiva de emisión de alcanza a unos 5 km de altitud (), de donde procede el grueso de la radiación térmica de la atmósfera[27]